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Abstract

The motion of an imaging sensor causes each imaged point of the scene to describe a

time trajectory on the image plane. The trajectories of all imaged points are reminiscent

of a ow (e.g., of liquid) which is the source of the term \optical ow". Optical-ow

ranging is a method by which the stream of two-dimensional images obtained from a

forward-looking forward-moving passive sensor is used to compute range to points in the

�eld of view. Another well-known ranging method consists of triangulation based on

stereo images obtained from at least two stationary sensors. In this paper we analyze

the potential accuracies of a combined optical ow and stereo passive-ranging system

in the context of helicopter nap-of-the-earth obstacle avoidance. The Cramer-Rao lower

bound is developed for the combined system under the assumption of a random angular

misalignment common to both cameras of a stereo pair. It is shown that the range

accuracy degradations caused by misalignment is negligible for a combined optical-ow

and stereo system as compared to a monocular optical-ow system.
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1 Introduction

Helicopters ying covert nap-of-the-earth missions need a means for passive ranging in

order to navigate around terrain obstacles. Two main passive-ranging methods can po-

tentially be employed for this purpose; one based on motion and the resulting image-

plane optical ow (OF), and the other based on stationary stereo. Both methods can

be thought of as special cases of a more general location method known in the literature

as \bearing-only " or \direction-of-arrival" (DOA) location (or localization). The term

\ranging" refers to determining range alone |implicitly assuming that the cross-range

is known| whereas, by location, we mean determining both coordinates in the plane. In

the sequel we use the noun \depth" rather than \range" for the sensor/object distance

along the line of sight (LOS) but we still prefer \ranging" on \depthing".

DOA algorithms date back to 1947 (The Stans�eld Algorithm [1]) and have been

used in many diverse areas such as submarine tracking through sonar measurements,

locating transmitters and radar sources for Elint (Electronic Intelligence), and locating

guns using acoustic sensors. This is why the wealth of literature in those other areas is

directly applicable to the problem at hand.

In passive ranging by stereo, the cameras are normally placed on a line perpendicular

to the aircraft longitudinal body axis and the objects of interest (obstacles) are located

in a small angular sector in front of the vehicle. Locating the obstacles in the vehicle's

coordinate system can be done by straightforward triangulation using a single stereo-pair

measurement. The e�ect of multiple (N) stereo measurements from a stationary camera

pair is simply to reduce the rms of the location errors by
p
N . The location accuracy

improves proportionate to the stereo-baseline length.

Optical-ow based ranging uses images obtained from a single camera but at di�erent

times associated with di�erent locations along the ight path. The baseline in this

case is created by the vehicle's motion. As a result, this baseline |although it can be

made long| is oriented along the ight path which is the worst possible geometry for
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triangulation of head-on objects. Determining the e�ect of multiplemeasurements (taken

along the baseline) on the location accuracy is not trivial because the geometry of every

pair of measurements is di�erent.

The relationship between the stereo and OF location methods can be summarized

as follows. Both methods use the geometrical principle of triangulation to solve for the

obstacle's location. In stereo, the baseline (distance between cameras) is �xed like an

aperture of a real antenna, whereas in OF, the baseline is synthetic because it is created

only due to the motion. For readers familiar with radar antennas, OF can be likened to

a Synthetic Aperture Radar (SAR) that almost looks forward. The SAR's angular accu-

racy, similar to the OF depth accuracy, degrades as observed objects approach the ight

path or, in OF terminology, the Focus of Expansion (FOE). The depth-measurement

error, as the angular accuracy of a SAR, is in�nite in that direction.

The complementing properties of stereo and OF ranging led us to investigate the

performance of a combined stereo/OF ranging method in which each one of the stereo

cameras provides its OF imagery resulting from a common forward motion. However,

there is yet another strong incentive to go in that direction as explained next. Field

implementation of the OF method involves an accurate alignment of the optical axis

with that of the inertial navigation system (INS) axis as determined by its initialization.

In practice, this alignment error can be of the order of 20 which, as shown later, would

result in large ranging errors. Implementation of stereo requires the alignment of two

cameras with the INS |resulting in misalignments, say, b1 and b2. Each error by itself is

of the same order of magnitude as for a single camera, however, the relative misalignment,

j b1 � b2 j can be made an order of magnitude smaller because it involves aligning two

similar optical sensors as opposed to aligning an optical sensor with the INS; for this

reason, the derivation in this paper assumes b1 = b2. We have found that a combined

stereo/OF system can reduce the sensitivity to misalignment of a monocular OF by an

order of magnitude.

Most of the DOA literature revolves around algorithm development, such as in [1, 2,
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Figure 1: The stereo geometry

3], and accuracy estimation, such as in [4, 5, 6]. Similarly, passive ranging, mainly through

OF, has concentrated on algorithm development [7, 8, 9, 10] and accuracy estimation

[7, 11]. Accuracy estimation can be done on particular location algorithms or in terms

of algorithm-independent bounds | which is where the present work belongs.

This paper starts (section 2) with the basic single-measurement accuracy of OF and

stereo as given by Sridhar and Suorsa[11]. We then extend these results to the multiple-

measurement case building upon the work of Wegner [5] and Gavish/Fogel [6] which is

summarized in sections 3.1 and 3.2. The latter two works develop the Cramer-Rao Lower

Bound (CRLB) for a single-sensor DOA problem without [5] and with [6] misalignment

error. Our extension to the stereo case is developed in section 4. Simulation results and

their interpretation are given in section 5.

2 Passive Ranging

In this section we discuss the simplest form of the two basic passive-ranging methods,

motion or monocular OF, and stationary stereo, as they are used separately.
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Figure 2: The Optical-Flow geometry for two consecutive frames

2.1 Stereo Method

Let us start with the stereo method because it is simpler to understand in terms of

triangulation. The geometry of this case is shown in �gure 1. The focal points of two

cameras of equal focal length f are located at x = 0; y = �bs=2, and their optical axes

are parallel to the X-axis. The focal planes are represented by the vertical dotted line

at x = f . A point object at P(x; y) casts its images at y = �bs=2 + u2 for the bottom

camera and at y = bs=2 + u1 for the top camera. From geometry of similar triangles,

u1 = f(y � bs=2)=x ; u2 = f(y + bs=2)=x (1)

which can be solved for the depth of the object, x:

x = fbs=(u2 � u1); (2)

Error analysis under the assumption x� bs yields (see [11])

�x =

p
2x2�u
bsf

(3)

where �u is the rms of the error in determining u.

From (3) the depth estimate error is proportional to the square of the depth, x, it

is independent of the lateral distance, y, and it is inversely proportional to the baseline

distance bs.
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2.2 Monocular Optical Flow Method

Figure 2 shows the geometry for a degenerate OF which is based on two consecutive

frames only. The (single) camera is similar to those of �gure 1; its focal point is initially

(at t = 0) located at the origin of the coordinate system and its focal plane at x = f .

An object at P(x; y) casts its image at y = u1. When the camera moves (for the second

frame) to a point x = bm, the image of the same (stationary) object appears at y = u2.

Typically, the distance bm is small compared to the distance x, which implies that

u1 � u2. This can thus be regarded as an equivalent stereo con�guration having a baseline

of bm sin � � bmu1=f . Substituting that in (2) and (3) yields the depth and its accuracy

as

x = bmu1=(u2 � u1) ; �x =

p
2x2�u
bmu1

(4)

It is now clear that the main di�erence between OF and stereo, as far as the depth

accuracy is concerned, is in the de�nition of the baseline; the OF baseline is proportional

to the inter-frame forward-motion, bm, and to the angle, �, measured from the ight

direction. This is why, in OF, depth accuracy degrades as the object gets closer to the

FOE ,i.e., u1 in (4) decreases.

3 Cramer-Rao Lower Bound for OF Passive Rang-

ing

So far, the basic accuracies of each ranging method were found separately. Two consecu-

tive frames from a single camera have been used for OF and two concurrent frames from

di�erent cameras for stereo. Two relevant questions here are: (1) what accuracies can

be obtained by each method separately in the case of multiple measurements, and (2)

similarly for a combined method that uses the optical ows of two cameras in a stereo

con�guration (referred to as stereo/OF). In this section we develop expressions for the

best achievable accuracies, based on the Cramer-Rao Lower Bound (CRLB) and special-
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ize them to monocular OF-based passive ranging. In the next chapter the results are

extended to the combined stereo/OF system.

3.1 The Cramer-Rao Lower Bound (CRLB)

A standard problem in parameter estimation involves estimating a real non-random pa-

rameter vector, �, as �̂(�), given the observations, �, which depend on �. Many estimators

are available of which some are unbiased. The Cramer-Rao inequality provides a lower

bound on the covariance of the estimation error of any unbiased estimate of �. This

bound de�nes the smallest attainable error ellipsoid in the parameter-vector space such

that ellipsoids de�ned by any other unbiased estimator either lie outside or coincide with

it; no intersection can occur. The error ellipse applicable to passive location in the plane

is de�ned in the Appendix. In this section we use the CRLB in the form developed by

Wegner [5] and Gavish/Fogel [6], and we thus follow their work for completeness. For

further detail the reader is advised to consult these two works.

Let us assume that the measurement vector has a multivariate normal distribution

with mean m (the measurement model) and covariance matrix � , that F (m;�) = 0 is

a given vector of constraints, and that Fm = @F=@m and F� = @F=@� are continuous

(which holds in our problem). The CRLB of an unbiased estimator of the parameter

vector � is given by

S� = [F T
� (Fm�F

T
m)
�1F� + J ]�1 (5)

where T denotes matrix transposition, and J is an information matrix reecting any a

priori knowledge about �.

Now consider the case shown in �gure 3, where the sensor, generally located at xi; yi ,

measures the angles �i to a stationary point P (x; y) with a misalignment of � (same �

is added to all angular measurements although it is shown only once). Further, assume

that the sensor is traveling along the X-axis1 and produces angular measurements from

points along its trajectory having xi = bm(i � 1)=(N � 1) , where N is total number of

1Although in this work we consider a straight trajectory as a tractable example, a similar derivation
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Figure 3: General sensor|object geometry

measurements. The angular measurements are

�i = tan�1(�yi=�xi) + �+ ni ; i = 1; 2; :::; N (6)

where

�yi
�
= y � yi ; �xi

�
= x� xi (7)

and ni are independent noise samples out of a Normal distribution having variance �2 .

The components of the measurement vector mean, m, are similar to the �i of (6)

in which the ni terms are omitted. As a result, Fm equals the N � N identity matrix

IN . Since the noise covariance matrix is diagonal, � = �2IN . Also, considering the mis-

alignment as a random variable to be estimated, having a zero-mean normal distribution

with variance �2�, J = diag (0; 0; ��2� ). No prior information is assumed about (x; y).

The vector to be estimated is � = (x; y; �); it is composed of the object location and the

unknown misalignment.

Di�erentiating the constraint equations (6) with respect to the estimation vector �

yields

F� = [G 1N ] (8)

could proceed with any other deterministic trajectory
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where

G
�
=

2
64 ��y1=r21 ��y2=r22 � � � ��yN=r2N

�x1=r21 �x2=r22 � � � �xN=r2N

3
75
T

; (9)

r2i
�
= �x2i + �y2i ; i = 1; 2; : : : ; N , and 1N is a unity vector of length N . Substituting

Fm; F�; � and J into (5) yields

S� =
n
[G 1N ]

T (�2IN )
�1 [G 1N ] + diag(0; 0; ��2� )

o
�1

= �2

2
64 V �1 H

HT (�=��)2 +N

3
75
�1

(10)

where H and V are de�ned as

H
�
= GT1N ; V

�
= (GTG)�1 (11)

The CRLB S on the location estimation (x; y) is given by the 2� 2 upper-left corner of

S�, that is,

S = �2
"
V +

V HHTV

(�=��)2 +N �HTV H

#
(12)

which is the result obtained by Gavish and Fogel in [6].

3.2 Evaluating the terms in the CRLB for monocular OF

The summations involved in H and V of (11) can be approximated by integrals (assuming

N � 1). When the sensor travels on the X-axis, yi = 0, so that, in (7), �yi = y .

Denoting the elements of the 2� 2 matrix GTG of (11) by gij , i; j = 1; 2, the element g11

can be found as

g11 =
NX
i=1

�y2i =r
4

i �
Ny2

bm

Z xN

x1

1

(y2 + x2)2
dx (13)

where bm = xN � x1. Performing the integration and using the notation �d
�
= �N � �1

and �s
�
= �N + �1 with �1 and �N de�ned in �gure 3 to be the initial and last observation

angles, yields

g11 =
N

2bmy

h
xy=(y2 + x2) + tan�1(x=y)

ixN
x1

=
N

2bmy

�
�1

2
sin 2� + � � �=2

��N
�1

=
N

2bmy
(� sin �d cos �s + �d) (14)
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The other three terms of GTG and the two needed for H can similarly be found, so that

(11) becomes

H � N

bm

"
��d ln

sin �N
sin �1

#T
; GTG =

N

2bmy

2
64 �d � sin �d cos �s � sin �s sin �d

� sin �s sin �d �d + sin �d cos �s

3
75 (15)

and

V = (GTG)�1 =
2bmy

N(�2d � sin2 �d)

2
64 �d + sin �d cos �s sin �s sin �d

sin �s sin �d �d � sin �d cos �s

3
75 (16)

4 The CRLB for combined Optical Flow and Stereo
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Figure 4: The traveling-stereo geometry

The above derivation is extended in this section to the case where optical ows from

two cameras in a stereo con�guration are observed in parallel.

4.1 Extension of the general derivation

The derivation of the CRLB for a pair of traveling cameras in stereo con�guration is

obtained as an extension of the derivation for a single camera. Our approach is to
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augment the set of single-camera constraints in (6) by a similar set written for the second

camera.

The geometry for this case is shown in �gure 4. The initial location of the stereo pair

of cameras is as in �gure 1. Their next locations are advanced in x by integer multiples

of bm=N up to bm. The �rst and last squint angles of one camera to the point P are

denoted by �1 and �N in analogy to �1 and �N of the other.

Equations (6, 7) are replaced here by

�i = tan�1
h
�y�i =�xi

i
+ �+ n�i ; �i = tan�1 [�y�i =�xi] + �+ n�i

�xi = x� bm(i� 1)=(N � 1)

�y�i = y � bs=2 ; �y�i = y + bs=2 ; i = 1; 2; :::; N (17)

Using two identical cameras for stereo justi�es the assumption that they have equal

noise variances. We also assumed that they have equal (but unknown) misalignments

as explained earlier. It is, of course, possible to assume independent misalignments for

the two cameras and estimate them both in analogy to the estimation of �. We chose to

proceed with the realistic assumption of only a single common misalignment.

Next, we replace (8) here by

F� =

2
64 G� 1N

G� 1N

3
75 (18)

which is written in a block-matrix form, where

G� =

2
64 ��y�1=r2�1 ��y�

2
=r2�2 : : : ��y�N=r2�N

�x1=r2�1 �x2=r2�2 : : : �xN=r2�N

3
75
T

G� =

2
64 ��y�1 =r2�1 ��y�

2
=r2�2 : : : ��y�N=r2�N

�x1=r2�1 �x2=r2�2 : : : �xN=r2�N

3
75
T

(19)

and

r2�i = �x2i +
�
�y�i

�
2

; r2�i = �x2i + (�y�i )
2 ; i = 1; 2; : : : ; N (20)
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Equations (10, 11) similarly transform to

S� =

8>><
>>:
2
64 G� 1N

G� 1N

3
75
T

(�2I2N)�1

2
64 G� 1N

G� 1N

3
75+ diag(0; 0; ��2� )

9>>=
>>;
�1

= �2

2
64 V �1s Hs

HT
s (�=��)2 + 2N

3
75
�1

(21)

where Hs and Vs, subscripted by s for \stereo", are de�ned as

Hs �
�
GT
� +GT

�

�
1N ; Vs �

�
GT
� G� +GT

�G�

��1
(22)

The CRLB, Ss, on the location estimation (x; y) based on OF from two cameras in

stereo con�guration is found as in (12)

Ss = �2
"
Vs +

VsHsH
T
s Vs

(�=��)2 + 2N �HT
s VsHs

#
(23)

When there is no a priori information about the misalignment, (23) becomes

Ss max = lim
��!1

Ss = �2
 
Vs +

VsHsH
T
s Vs

2N �HT
s VsHs

!
(24)

and, when the misalignment is known, (23) becomes

lim
��!0

Ss = �2Vs (25)

4.2 Interpretation of the Results

4.2.1 Least Squares Achieves the CRLB

Returning to (10) and its underlying assumptions, it is easy to see that the CRLB is

achievable by a maximum-likelihood (ML) algorithm. Poirot [2] gives a general least-

squares (LS) solution to the problem of location/misalignment estimation when the ob-

servations are linearized around the correct parameter values. His LS problem is identical

to the linearized version of (6), that is, solve

� = F�� + e (26)
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for the parameter vector �
�
= (x; y; �), where � is the vector of angle measurements, F� is

given by (8), and e is the measurement-noise vector having a diagonal covariance matrix

�. The LS solution [2, 13] is

�̂ = PF T
� �

�1� ; P = (F T
� �

�1F�)
�1 (27)

where P is the covariance matrix of the estimate error [13], i.e.,

P
�
= cov(� � �̂) (28)

Note from (27) and (10) that, when �� )1 (i.e., there is no a priori knowledge about

the misalignment magnitude), P = S�.

4.2.2 Error Ellipses Never Intersect

For a bivariate Gaussian location error, the joint probability density function of the

location-error vector, r = (�x;�y), is proportional to expf�1

2
rTS�1r g. Thus, the

equation rTS�1r = c , for any positive constant c, describes an iso-probability ellipse in

the plane. We call the ellipse obtained with c = 1 the \error ellipse".

Let us now examine the two terms inside the brackets of (12) (or (23)) in order to

determine their relative e�ect on the error ellipse. The �rst term is V which, being a

covariance matrix, is a positive de�nite matrix (PDM). The second term is a rank-1 matrix

divided by a scalar. The associated quadratic form of that matrix is rTV HHTV r =k
HTV r k2 which is non-negative; thus V HHTV is a positive semi-de�nite matrix (PSDM).

We will show that the dividing scalar is a small positive number whose e�ect is to amplify

V HHTV , i.e., to increase the location errors. Our goal is to show that increasing the

stereo baseline increases the value of this number (in (23)) so that the contribution of

the second matrix to the errors is mitigated compared to the non-stereo case.

From (11),

N �HTV H = 1TN
�
IN �G(GTG)�1GT

�
1N : (29)

The rank-2 N�N matrix G(GTG)�1GT is obviously symmetric and idempotent, thus,

for any N > 2, it is a projection matrix (onto the column space of G) which must be
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a PSDM. In general, if M is a projection matrix, so is I �M , thus (29) is recognized

as a quadratic form evaluated for the particular vector 1N . Since 1N does not lie in the

column space of G, it cannot zero this quadratic form. We thus conclude that N�HTV H

is a positive scalar which we call \misalignment sensitivity factor" (MSF).

From (15) and (16) it is seen that HTV H is / N , so that MSF/ N . Also, V / 1=N ,

and V HHTV is independent of N . Thus S (for �� !1) of (12) is / 1=N as expected.

It will be later seen that the value of the MSF of a stereo/OF system is of the

order of 10�5 when bs = 0 (i.e., a monocular system), and it increases dramatically

(three orders of magnitude) with even a small increase in bs. This advantage of stereo

becomes apparent when the MSF's magnitude is compared with that of the additional

positive scalar (�=��)2 in (12) or in (23) which always increases the denominator | thus

mitigates the adverse e�ect of the matrix V HHTV (or VsHsH
T
s Vs). For typical values

of � = 0:10 and �� = 20, (�=��)2 = 25 � 10�4 which is 100 times larger than the MSF

of a monocular OF but is of the same order of magnitude of the MSF for stereo/OF.

Therefore the stereo/OF location variances are almost immune to the value of �� whereas

the monocular OF variances go almost linearly with �2�.

It is shown in the appendix that the error ellipse associated with the summation of

a PDM V and a rank-1 matrix uuT always encloses and tangential to (touches at two

points) the error ellipse associated with V alone. This result indicates that the ellipses

determined by (12) (or (23)) grow with �� so that each larger ellipse fully encloses the

smaller-�� ellipse and all share the same two tangent points.

Later we will need the major and minor axes of the error ellipses and their orienta-

tion. The necessary results are summarized below [4]. Consider the ellipse rTS�1r = 1,

associated with a covariance matrix S, where r = (x; y) is the location vector in the

plane, and denote its components by sij, i; j = 1; 2 . This ellipse has major (�L) and

minor (�S) radii equal to the square root of its large and small eigenvalues which are

given by

�2L; �
2

S =
1

2

�
s11 + s22 �

q
(s11 � s22)2 + (2s12)2

�
(30)
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where the +
p� corresponds to �L and �p� to �S. The major axis is rotated with

respect to the X axis by

 =
1

2
tan�1

�
2s12

s11 � s22

�
; � �

4
�  � �

4
(31)

The directions of the ellipse axes coincide with the direction of the corresponding eigen-

vectors. In monocular OF with no misalignment, it is easy to �nd from (12), (16), (30),

and (31) that

 =
1

2
(�1 + �N) (32)

�2L =
2Ly

N

�2

�d � sin �d
; �2S =

2Ly

N

�2

�d + sin �d
(33)

which interestingly orients the major ellipse axis at the exact average of the initial/�nal

squint angles. �L of the stereo/OF case is later given by (44).

4.3 Evaluating the CRLB for stereo/OF

Approximating all summations involved in Ss of (23) by integrals as before, yields

Hs � N

bm

"
�(�d + �d) ln

sin �N sin�N
sin �1 sin�1

#T
(34)

V �1s =
N

2bmh�h�

2
6666666666664

h�(�d � sin �d cos �s) �h� sin �s sin �d
+h�(�d � sin�d cos�s) �h� sin�s sin�d

�h� sin �s sin �d h�(�d + sin �d cos �s)

�h� sin�s sin�d +h�(�d + sin�d cos�s)

3
7777777777775

(35)

where

h�
�
= y � bs=2 ; h�

�
= y + bs=2 (36)

and

�d
�
= �N � �1 ; �s

�
= �N + �1 ; �d

�
= �N � �1 ; �s

�
= �N + �1 (37)

with �1, �N , �1, �N the initial and �nal squint angles for the two cameras as de�ned in

�gure 4. Vs is obtained by inverting (35); the determinant of this inversion is

� = h2�(�
2

d � sin2 �d) + h2�(�
2

d � sin2 �d) + 2h�h�[�d�d � sin �d sin�d cos(�s � �s)] (38)
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The above completes the evaluation of all terms in (23). The resulting 2� 2 matrix,

Ss, describes the estimation errors in the (X;Y ) plane.

4.4 Small-angle approximations to the CRLB for stereo/OF

The above CRLB expressions for stereo/OF are too cumbersome to be readily interpreted.

For the zero-misalignment case we will derive approximate expressions which allow some

interesting insight.

Let us assume a narrow �eld of view of, say, �150, bm � x, and bs � y which allows

the approximations

sin x � x� x3=6 : cosx � 1 � x2=2 : h� � h� � y : �s � 2�1 : �s � 2�1 (39)

Starting with Vs of (35), the terms appearing in its determinant (38) are

�2d � sin2 �d � �4d
3
; �2d � sin2 �d � �4d

3
; sin �d sin�d � �d�d � �d�

3

d

6
� �3d�d

6

�1 � �N ; �1 � �N ; �s � 2�1 � 2
y � bs=2

x
; �s � 2�1 � 2

y + bs=2

x
; �s � �s = 2bs=x

(40)

so that

� � 4y2�2d

 
�2d
3
+

b2s
x2

!
(41)

Note that � and the other approximated expressions can alternatively be written in

terms of di�erence and sum angles based on � or on � since �d � �d and �s � �s .

Approximating the di�erence angle �d by bm�1=x,

� � 4y2b2m�
2

1

x4

 
b2m�

2

1

3
+ b2s

!
(42)

The approximate expressions for the matrix elements of Vs can be similarly found

so that

Vs � 2yx3

N(b2m�
2
1=3 + b2s)

2
64 1=�1 1

1 �1

3
75 (43)
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The covariance matrix of (43) is inevitably singular because of the �rst-order approx-

imations used in its derivation. Singularity only means that the error ellipse degenerates

into its major axis (a line), i.e., its minor axis equals zero. Higher-order approximations

are needed to �nd the minor axis. From (30), we have

�L �
p
2x2p

N f
q
b2m�

2

1=3 + b2s
�u (44)

where we have used �1 � y=x � u1=f ; � = �u=f .

It is interesting to compare the above results with those of section 2. Setting bm = 0

in (44) degenerates it to reect only stationary stereo errors, that is,

�L �
p
2x2p
Nfbs

�u (45)

This result is expected since it only di�ers from (3) by a factor of
p
N . This is because

all N stereo measurements are collocated and independent; thus the CRLB is met by a

simple averaging algorithm.

Setting bs = 0 in (44) degenerates it to reect monocular-OF errors because it forces

the stereo camera pair to be collocated. To obtain results for a single, rather than for

two collocated traveling cameras, the variance result has to be doubled, i.e.,

�L �
p
12x2p
Nu1bm

�u (46)

which is
q
6=N times the �x in (4). The factor of 1=N accounts for the N independent

measurements. The factor of 6 reects averaging on the changing geometry during the

OF observation time.

5 Simulation Results

In this section we present simulation results that exemplify the predicted theoretical

behavior. Unless stated otherwise, all cases assume ranging an object at x = 150 m,

observation time: T = 1:5 s, sampling time: �T = 0:05 s, noise rms: � = 0:10, and
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Figure 5: Error ellipses: bs = 0 (t), = 1 m (b), V = 15 m/s, no misalignment.
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Figure 6: Error ellipses: bs = 2 (t) = 4 m (b), V = 15 m/s, no misalignment.
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Figure 7: Case similar to �gure 5 but with V = 10 m/s

lateral object distance: y = 10; 20; 30; 40; 50 m. The noise rms was chosen to represent

half a pixel for a camera that employs a 512�512 detector and covers a �eld of view of

1020. The other parameters are speci�ed for each case.

Let us start with zero-misalignment cases. Figure 5 shows such a case for a vehicle

speed of V = 15 m/s and two values for the stereo baseline: bs = 0; 1 m. The ellipses

can be thought to be centered on point P of �gure 4. All have a major axis in the line-

of-sight direction which is much larger than their minor axis. The ellipses are shown in

their correct angular position. Thus the longest ellipse belongs to y = 10 m and its major

axis is at 0.0725 rad from the ight path which is the average angle between 10/150 and

10/127.5 rad (V T = 22:5 m). The shortest ellipse belongs to y = 50 m. Clearly, the

depth accuracy improves as y (or �) increases. The corresponding ellipses for bs = 1 are

smaller, and also the ratio between the y = 50 m | and y = 10 m | ellipses is smaller

as compared to the bs = 0 m case. The non-zero stereo baseline is, of course, the reason

for the improved accuracy which is relatively more pronounced at small squint angles as
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Figure 8: Depth errors for bs = 0; 1; 2; 3; 4 m, V = 15 m/s, no misalignment

seen in (44).

Figure 6 is similar to �gure 5 except that the stereo baseline has values of bs =

2; 4 m. Here the ellipses justify their name better because the major axis has decreased

considerably with increasing bs. Figure 7 is similar to �gure 5 but for V = 10 m/s instead

of V = 15 m/s which makes the OF baseline, bm, 1.5 times shorter. This causes the case

of bs = 0 (top) to show ellipses which are longer by 50%. On the other hand, in the case

of bs = 1 m the accuracies are only degraded by about 15% for small squint angles.

The e�ect of stereo baseline, vehicle speed, and cross-depth (squint angle) are sum-

marized in �gures 8, for V = 15 m/s, and �gure 9, for V = 10 m/s. It is seen that

increasing bs has the largest e�ect when the squint angles are small, and that, for a large

bs, the depth errors become insensitive to the vehicle speed.

Now we investigate the e�ect of stereo baseline on the MSF, 2N �HT
s VsHs, in (24).

The MSF is a very small positive number whose inverse directly ampli�es the matrix



5 SIMULATION RESULTS 23

0

5

10

15

20

25

30

35

5 10 15 20 25
0

5

10

15

20

25

30

35

5 10 15 20 25

M
aj

or
 r

ad
iu

s,
 m

y, m

Stereo baseline, m

0

1

2
3

4

Figure 9: Case similar to �gure 8 but with V = 10 m/s

10-7

10-6

10-5

10-4

10-3

0 0.5 1 1.5 2

Stereo baseline, m

1-
H

‘V
H

/(
2N

)

10-7

10-6

10-5

10-4

10-3

0 0.5 1 1.5 2

y=10 m

20

30 40 50

Figure 10: Misalignment sensitivity factor for V = 10 m/s, y = 10 m to 50 m



5 SIMULATION RESULTS 24

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

-60

-40

-20

0

20

40

60

-60 -40 -20 0 20 40 60

One-sigma error ellipses

y,
 m

x, m

Figure 11: Error ellipses for V = 10 m/s, y=10 to 50 m, �� = 20, � = 0:10, bs = 0 m

VsHsH
T
s Vs when the misalignment is completely unknown; it is given (normalized by

2N) in �gure 10 for V = 10 m/s and y = 10 to 50 m. It is seen that the MSF increases

dramatically with the stereo baseline | up to 3 orders of magnitude; this establishes

one of our most important conclusions. The e�ect of this factor will now be translated

directly to the error ellipses.

In the sequel we di�erentiate between the major ellipse axis and the depth (or

line-of-sight) direction because they turn out to be di�erent in the case of an unknown

misalignment. Two sets of error ellipses are shown in �gures 11 (for bs = 0) and in

�gures 12 (for bs = 1 m). It is seen that even a small stereo baseline of 1 m decreases

the major ellipse axis for small squint angles by a factor of 10. Interestingly, in this

case the major axes for stereo become constant | irrespective of the squint angle. This

\equalization" e�ect only shows up in the unknown-misalignment case as compared with

the similar case (but with no misalignment) shown in �gure 7. This comparison also

shows that an unknown misalignment (�� = 20) increases the major axes by a factor of
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Figure 12: Similar to �gure 11 but with bs = 1 m

� 5 compared to a zero-misalignment monocular OF as opposed to only a factor of � 1:2

(for small squint angles) up to � 2:2 (for large squint angles) for stereo with bs = 1 m.

Figure 13 summarizes the e�ect of stereo baseline on the major axes in the presence

of unknown misalignment. It is seen that the major axis becomes virtually constant with

respect to the cross-depth for bs > 0:5 m, and that this constant is inversely proportional

to bs.

Figures 14 and 15 show the e�ect of stereo on the error ellipses. In general, the

zero-misalignment ellipses are narrow so that their apexes are very close to the points of

tangency with the misalignment ellipses. Since the major axes of the zero-misalignment

ellipses coincide with the depth direction, we conclude that the misalignment ellipses

show almost the same depth accuracy although their major axis is much larger. We,

thus, compare cases by their major axis.

Figure 14 shows the error ellipses resulting from misalignment errors of �� =
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Figure 15: Same as �gure 14 except that bs = 1 m

0; 1; 2; 3; 40 for the case of y = 25 m, V = 10 m/s and bs = 0. It is seen that the

major axes grow, close to linearly with ��, from 5 m to 60 m. This happens because the

MSF is negligible compared to (�=��)2 in (23). Figure 15 shows the same case as �gure

14 except that bs = 1 m. Here, since the MSF is � 3 orders of magnitude larger, ellipses

corresponding to �� � 20 are already close to the asymptotic ellipse of (24) which has a

major axis only twice as large as in the zero-misalignment case.

Appendix

In this appendix we show that the error ellipse

rTV �1r = 1 (47)

in the location-error plane r = (�x;�y) is enclosed by and tangential to the error ellipse

RT
�
V + uuT

�
�1

R = 1 (48)
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which is written for the generally-di�erent vector R.

Consider a vector r that belongs to the (47) ellipse. We will �rst show that the

same vector has to be elongated by a factor a > 1 in order to reach the ellipse of (48)

| meaning that the latter ellipse is farther away from the origin at all its points. To do

that, (48) is rewritten, using the matrix inversion formula [12], as

RT

 
V �1 � V �1uuTV �1

1 + uTV �1u

!
R = 1 (49)

Plugging R = ar into (49) and dividing both sides of the equation by a2,

rTV �1r � rT
V �1uuTV �1

1 + uTV �1u
r =

1

a2
(50)

Now, using (47),
a2 � 1

a2
= rT

V �1uuTV �1

1 + uTV �1u
r (51)

For a PDM V , uTV �1u is a positive scalar. Also, rTV �1uuTV �1r =k uTV �1r k2> 0,

thus the right-hand side of (51) is a positive scalar which can only be satis�ed on the

left-hand side by an a > 1.

Now we want to prove that both ellipses are tangential. Returning to (49), it is seen

that, for a vector R? orthogonal to V �1u, the inner product uTV �1R? = 0; this will zero

out the second matrix inside the parenthesis. For that vector only, (49) takes the form

of (47) | meaning that this vector intersects the ellipses of (47), and (48) at their two

tangential points.

6 Summary and Conclusions

In this paper we developed the CRLB for the location errors of a combined stereo/optical-

ow system in the presence of misalignment between the stereo camera pair and the INS.

It has been shown that even a very small stereo baseline decreases the errors by a large

factor. The error analysis in this work can serve to guide the design and choice of

parameters for a passive obstacle-avoidance system.
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